Таблица теплопроводности строительных материалов

Таблица теплопроводности строительных материалов. Характеристики и сравнение строительных материалов

Строительство коттеджа или дачного дома – это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности

Теплопроводность – это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность – это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Коэффициент теплопроводности

Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность – это переменная величина. Она зависит от множества факторов, главными среди которых являются:

  • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
  • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
  • Разница между температурами на улице и внутри дома.
  • И другие.

Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

Определение потерь тепла

Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

  • Крышу (от 15 % до 25 %).
  • Стены (от 15 % до 35 %).
  • Окна (от 5 % до 15 %).
  • Дверь (от 5 % до 20 %).
  • Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее – в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла

Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину – 10 метров, а длину – 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

  • Окна – 10 м 2 .
  • Пол – 150 м 2 .
  • Стены – 300 м 2 .
  • Крыша (со скатами по длинной стороне) – 160 м 2 .

Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d – толщина материала, а λ – коэффициент его теплопроводности.

Пол – 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

Аналогично считаются стены, окна и кровля. Материал – ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна — 0,4 (м 2 *°C)/Вт.

Кровлю будем считать из минеральной ваты толщиной в 10 см и профлиста. Так как металл имеет высокий коэффициент теплопроводности, то профлист в расчет не берем. Тогда R крыши составит 2,8 (м 2 *°C)/Вт.

Следующая формула позволяет выяснить потери тепловой энергии.

Q = S * T / R, где S – площадь поверхности, T – разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

  • Для крыши: Q = 160*40/2,8=2,3 кВт.
  • Для стен: Q = 300*40/3,75=3,2 кВт.
  • Для окон: Q = 10*40/0,4=1 кВт.
  • Для пола: Q = 150*40/2,858=2,1 кВт.

Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

Материалы для внешних стен

На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия – это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

Источник:
http://www.syl.ru/article/298809/tablitsa-teploprovodnosti-stroitelnyih-materialov-harakteristiki-i-sravnenie-stroitelnyih-materialov

Коэффициент теплопроводности кирпича в сравнении с другими материалами

Кирпич – настолько известный стройматериал, что используется практически везде, даже для замены бетона или дерева. Из этого строительного материала можно строить небольшие дачные домики или крупные стратегические объекты, а популярность кирпича из любого природного материала обусловлена его обоснована прочностью, долговечностью и другими параметрами, среди которых теплопроводность красного кирпича, высокие характеристики шумо- и теплоизоляции, и другие показатели. В индивидуальном строительстве главное не только долговечность жилья, но и тепло в доме, поэтому коэффициент теплопроводности силикатного кирпича играет решающую роль при выборе строительных материалов, а сравнить эксплуатационные характеристики этих строительных изделий можно с деревом или ячеистым бетоном, так как это – главные конкуренты кирпича в частном жилищном строительстве. Сравнение теплопроводности кирпича и пеноблока

Изделия из кирпича – характеристики

Клинкерный кирпич обладает самым высоким коэффициентом теплопроводимости, благодаря чему его применение очень узкоспециализированное – для кладки стен материал с такими свойствами использовать было бы нецелесообразно и затратно в плане дальнейшего утепления здания – заявленная теплопроводимость этого материала (λ) находится в диапазоне 04-09 Вт/(м·К). Поэтому клинкерный кирпич чаще всего идет для дорожных покрытий и укладки прочного пола в производственных сооружениях.

У силикатных изделий теплопередача прямо пропорциональна массе изделия. То есть, у двойного кирпича из силиката марки M 150 теплопотери составляют λ = 0,7-0,8, а у щелевого силикатного изделия коэффициент передачи тепла будет равняться λ = 0,4, то есть – в два раза лучше. Но стены из силикатного кирпича рекомендуется дополнительно утеплять, к тому же прочность этого стройматериала оставляет желать лучшего.

Керамический кирпич производится в разных вариантах форм и характеристик:

  1. Полнотелые изделия с коэффициентом теплопроводности λ = 0,5-0,9;
  2. Пустотелые изделия – λ принимается равным 0,57;
  3. Рядовой огнеупорный материал: коэффициент теплопроводности шамотного кирпича равен λ = 06-08 Вт/(мК);
  4. Щелевой с коэффициентом λ = 0,4;
  5. Керамический кирпич с повышенными теплоизоляционными характеристиками и λ = 0,11 очень хрупкий, что значительно сужает ареал его применения.

Размеры кирпича

Из всех разновидностей керамического кирпича можно возводить стены дома, но у каждого – свои теплотехнические параметры, исходя из которых, производится расчет будущего наружного утепления стен.

Показатели теплопроводности изделий из керамики – самые низкие среди перечисленных выше вариантов.

Не нужен специальный уход

Поризованный кирпич как материал с характеристиками теплопроводности является самым лучшим, как и теплая кирпичная керамика. Поризованное изделие делается так, что кроме щелей в теле, материал имеет особую структуру, уменьшающую собственный вес кирпича, что и повышает его теплонепроницаемость.

Поризованный кирпич

Любой кирпич теплопроводность которого может достигать показателей 0,8-0,9, имеет свойство накапливать в теле изделия влагу, что особенно негативно проявляется в морозы – превращение воды в лед может вызвать разрушение структуры кирпича, да и постоянный конденсат в стене – это причина появления плесени, препятствие для прохождения воздуха сквозь стены и уменьшение теплопроводности стен в целом.

Чтобы не допустить или максимально уменьшить накопление влаги в стенах, кирпичная кладка делается с воздушными зазорами. Как правильно обеспечить постоянную воздушную прослойку:

  1. Начиная с первого ряда кирпича, между изделиями оставляют воздушные зазоры до 10 мм толщиной, не заполняемые раствором. Шаг таких зазоров – 1 метр;
  2. Между кирпичом и материалом теплоизолятора по всей высоте стены оставляют воздушный зазор толщиной 25-30 мм – по типу вентилируемого фасада. По этим воздушным каналам будут проходить постоянные воздушные потоки, которые не дадут стене потерять свои теплоизоляционные свойства, и обеспечат постоянную температуру в доме при условии работающего зимой отопления.

Воздушные пустоты в кирпичной кладке

Важно: не рекомендуется обустраивать бетонную стяжку или перекрытие из любых стройматериалов на последнем ряду кладки из кирпича – нужно, чтобы воздух по каналам циркулировал постоянно.

Существенного уменьшения коэффициента теплопроводимости кладки из кирпича можно добиться, не понеся при этом больших расходов, что важно для индивидуального строительства. Качество жилья при реализации вышеперечисленных методов не пострадает, а это – самое главное.

Если в строительстве дома использовать огнеупорный шамотный кирпич, то можно заметно повысить и пожарную безопасность жилья, опять же без существенных затрат, кроме ценовой разницы в марках кирпича. Коэффициент теплопроводности у огнеупорного кирпича немного выше, чем у клинкерного, но безопасность тоже имеет большое значение при эксплуатации дома. Повышение уровня звукоизоляции кирпичной стены утеплителем

Уровень звукоизоляции стен равен из керамического кирпича ≈ 50 Дб, что близко к стандартным требованиям СНиП – 54 Дб. Такой уровень звукоизоляции может обеспечить кирпичная стена, выложенная в два кирпича – это 50 см толщины. Все остальные размеры нуждаются в дополнительной шумоизоляции, реализованной в самых разных вариантах. Например, железобетонные стены панельного стандартной толщины 140 мм имеют степень шумоизоляции 50 дБ. Повысить свойства звукоизоляции дома можно, увеличив толщину кирпичных стен, но выйдет это дороже, чем при прокладке дополнительного слоя шумоизоляции.

Особенности и отличия типов кирпича

Строительное назначение различных марок кирпича разное – это специальный кирпич, облицовочный и строительные марки. При возведении дома используют обычный строительный кирпич, для декорирования фасадов домов – облицовочные изделия, а специальные марки используют для особых условий эксплуатации конструкции из кирпича, например, в печи или камине. Полнотелый кирпич

Полнотелые кирпичные изделия, согласно технологии изготовления, имеют ≤ 13% воздушных пустот: такой кирпич подходит для строительства наружных и внутренних стен дома, колонн и столбов, перемычек и арок. Объекты из полнотелого кирпича могут выдерживать повышенную нагрузку из-за высоких показателей прочности по сжатию, изгибанию и морозоустойчивости. Параметры теплоизоляции кирпича, свойства водопоглощения и сцепляемость зависят от степени пористости изделия. Этот кирпич имеет средние показатели сопротивления к теплопередаче, поэтому стены дома рекомендуется делать достаточно толстыми (не менее 0,5 метра), и проводить утепление другими средствами.

Пустотелый кирпич производится с объемом пустот ≤ 45%, поэтому его вес меньше, чем у стандартного полнотелого кирпича. Его используют при строительстве внутренних перегородок, наружных стен и каркасов многоэтажных высотных домов. Форма пустот бывает сквозной или односторонней (закрытой с торца), в форме круга, квадрата, овала или прямоугольника. Формируют пустоты в вертикальном или горизонтальном направлении относительно продольной оси изделия.

Читайте также  Что делать сначала пол или стены - есть ответ!

Пустоты в и без того небольшом изделии экономят почти половину строительного материала и делают стены теплее. При укладке пустотелого кирпича необходимо контролировать консистенцию цементного раствора – он не должен растекаться по поверхности и заполнять пустоты, которые формируют в стене, о чем писалось выше. Пустотелый кирпич

Назначение облицовочного кирпича понятно из его названия – он используется для облицовки фасадов и боковых стен дома. Размеры облицовочных изделий такие же, как и у обычного строительного кирпича (можно приобрести и партию с уменьшенными размерами), что облегчает работу с ним. Кирпич для облицовки часто изготавливают с пустотами, что улучшает его потребительские характеристики – работая с таким кирпичом, можно сэкономить на дополнительной теплоизоляции стен. Кирпич облицовочный

Пример марок специальных кирпичей – теплоизолирующие и огнеупорные изделия. Обе марки используют при строительстве печей для обогрева и домашних каминов, а также промышленных плавильных печей. Материал для изготовления – шамотная глина с особыми свойствами огнеупорности. При этом разные технологии изготовления позволяют использовать огнеупорный кирпич для разных условий эксплуатации. Например, кирпич с огнеупорными свойствами может выдержать температуру больше 1600 °С, а теплоизолирующие марки кирпича применяют в технологиях теплоизоляции, например, при нагревании наружных стенок мартеновских печей, а также для предотвращения потерь тепла в зданиях. Для строительства наружных несущих стен дома огнеупорный кирпич не годится – из-за невысокой прочности на сжатие из него можно строить только внутренние перегородки в доме.

Огнеупорный кирпич

Основное предназначение клинкерного кирпича – облицовка фундаментов домов. Эта марка имеет высокий коэффициент морозоустойчивости, механической прочности и водопоглощения, так как для его изготовления используют тугоплавкую глину. Сырой клинкерный кирпич обжигается при более высоких температурах, чем при обжиге обычных марок кирпича.

Источник:
http://jsnip.ru/normy/kirpich-teploprovodnost.html

Какая теплопроводность кирпича?

Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Теплопроводность кладки

По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:

  1. За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
  2. Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
  3. Определяют для кладки термическое сопротивление.
  4. Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.

Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.

После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.

Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.

Уменьшение коэффициента теплоотдачи стены

Существует несколько способов, которые позволяют снизить тепловые потери.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Что обозначает показатель

Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.

Физический смысл показателя теплопроводности — какое за единичный интервал времени через единицу площади сечения проходит количество теплоты.

В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:

  • малоэффективная (обыкновенная) — от 0,46 и выше;
  • условно-эффективная — 0,36-0,46;
  • эффективная — 0,24-0,36;
  • повышенная — 0,2-0,24;
  • высокая — меньше 0,2.

Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.

Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.

Свойства различных типов

Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:

Красный керамический

Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.

Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.

Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.

Красный кирпич из керамики российского производства имеет толщину 6,5 см и 25 см в длину. Для двойного толщина составляет 13,8 см, 8,8 см — для полуторного.

У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.

Чтобы внутри изделия образовались пустоты, используется «шихта» — торф, крошки угля, опилки, солома мелко порубленная. Ее добавляют в массу глины. Пустоты образуются, когда добавки выгорают при спекании глины в печах с 1000°С температурой.

По показателю плотности кирпич делится на 7 категорий — от 2,4 до 0,7. Каждый класс изделия обладает собственной теплопроводностью.

0,6-0,7 — коэффициент теплопроводности для изделий с цельной структурой. Для пустотелых — 0,5-0,25 Вт/м*0С.

Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.

Клинкерный

Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.

При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.

Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.

  1. Морозостойкость более 100 циклов.
  2. Минимальная марка прочности М250.
  3. 1500 кг/см3 — наименьший показатель плотности.
  4. Высокая огнестойкость, устойчивость к биологическим угрозам, воздействию ультрафиолета.
  5. 6% — максимальное водопоглощение.
  6. Коэффициент теплопроводности — 1,15Вт/м*0С.

Характеристика шамотного

Этот вид кирпича делают из специальной глины — желтого шамота. Получаемые изделия являются жаростойким материалом, который в сложных условиях высоких температур даже под высоким давлением способен сопротивляться деформациям. Длительный контакт с открытым огнем спокойно им переносится.

Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.

Материал делят на 8 групп по показателям пустотности. Максимальное значение — 85%, минимальное — 3%. Чем меньше удельный вес изделия, тем ниже прочностные характеристики.

Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:

Силикатный

Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.

Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.

ГОСТ379-95, 379-2015 определяют требования к силикатному кирпичу. 15-31% составляет показатель пустотности. Вес изделий — от 3,2 до 5,8 кг.

  • 1450 кг/м3 — для пустотелого кирпича марки М150;
  • 1700-2100 кг/м3 — для полнотелого М150-200.

Теплопроводность пустотелых силикатных изделий составляет 0,56-0,81 Вт/м*0С, и 0,65-0,88 — для полнотелых.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

Что влияет на показатели

Теплопроводность стройматериала — способность сквозь свою толщину передавать тепло и стационарные внутренние процессы, происходящие внутри него при этом. Тесный контакт является обязательным условием для передачи теплоты от 1 объекта к другому, поэтому в чистом виде теплопроводность имеют только твердые тела.

На показатель λ оказывает влияние:

  • влажность;
  • температура;
  • пористость;
  • формы и структура пор;
  • фазовый состав влаги;
  • плотность.

Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.

Входящие в состав материала вещества своей химической природой определяют способность удерживать тепловую энергию. Величина λ тем меньше, чем слабее связаны между собой образующие кристаллическую решетку вещества атомные группы или тяжелые атомы.

Источник:
http://kubkirpich.ru/o-kirpiche/teploprovodnost.html

Теплопроводность и теплоемкость кирпича

Теплопроводность и теплоемкость кирпича – важные параметры, позволяющие определиться с выбором материала для возведения жилых зданий, сохраняя в них необходимый уровень тепла. Удельные показатели рассчитываются и приводятся в специальных таблицах.

Что это такое и что на них влияет?

Теплопроводностью называется процесс, который происходит внутри материала при передаче тепловой энергии между частицами или молекулами. При этом более холодная часть получает тепло от более нагретой. Энергетические потери и выбросы теплоты происходят в материалах не только в результате процесса передачи тепла, но и при излучении. Это зависит от того, какова структура данного вещества.

Читайте также  Оптимальные размеры бани: ширина и высота идеальной парилки

Каждый строительный компонент имеет определенный показатель проводимости тепла, полученный опытным путем в лаборатории. Процесс распространения тепла неравномерен, поэтому выглядит на графике как кривая. Теплопроводность – физическая величина, которая традиционно характеризуется коэффициентом. Если посмотреть в таблицу, можно легко заметить зависимость показателя от условий эксплуатации данного материала. Расширенные справочники содержат до нескольких сотен видов коэффициентов, определяющих свойства различных по строению стройматериалов.

Для ориентира при выборе в таблице указывают три условия: обычные – для умеренного климата и средней влажности в помещении, «сухое» состояние материала, и «влажное» – то есть эксплуатацию в условиях повышенного количества влаги в атмосфере. Легко заметить, что у большинства материалов коэффициент возрастает с увеличением влажности окружающей среды. «Сухое» состояние определяется при температурах от 20 до 50 градусов выше нуля и нормальном атмосферном давлении.

Если вещество используется как теплоизолятор, показатели выбирают особенно тщательно. Пористые структуры сохраняют тепло лучше, а более плотные материалы отдают его сильнее в окружающую среду. Поэтому традиционные утеплители обладают самыми низкими коэффициентами теплопроводности.

Как правило, для строительства подходит оптимально стекловата, пено- и газобетон с особо пористой структурой. Чем плотнее материал, тем большей теплопроводностью он обладает, следовательно, передает энергию в окружающую среду.

Виды материалов и их характеристики

Кирпич, выпускаемый на сегодняшний день во множестве видов, применяется при строительстве повсеместно. Ни один объект – крупный промышленный корпус, жилой многоквартирный или небольшой частный дом, не возводится без кирпичного основания. Строительство коттеджей, популярное и сравнительно недорогое, базируется исключительно на кирпичной кладке. Кирпич давно стал основным строительным материалом.

Это произошло благодаря его универсальным свойствам:

  • надежности и долговечности;
  • прочности;
  • экологичности;
  • отличным звуко- и шумоизоляционным характеристикам.

Выделяют следующие разновидности кирпича.

  • Красный. Изготавливается из обожженной глины и добавок. Отличается надежностью, долговечностью и морозостойкостью. Подходит для возведения стен и строительства фундамента. Обычно кладется в один или два ряда. Теплопроводность зависит от наличия зазоров в изделии.
  • Клинкерный. Самый прочный и плотный облицовочный кирпич. Полнотелый, цельный и надежный печной материал по причине высокой плотности имеет и наиболее значительный по величине коэффициент теплопроводности. И поэтому для стен его бессмысленно использовать – в доме будет холодно, понадобится значительное утепление стен. Зато кирпич клинкерный незаменим в дорожном строительстве и при укладке пола в промышленных зданиях.
  • Силикатный. Недорогой материал из смеси извести с песком, часто изделия объединяют в блоки для улучшения эксплуатационных свойств. При возведении построек используется не только полнотелый, но и силикат с пустотами. Показатели долговечности у песчаного блока средние, а теплопроводность зависит от размеров соединения, но все же остается достаточно высокой, поэтому дом потребует дополнительного утеплителя.

Ниже показатель у щелевого брикета по сравнению с аналогом без внутренних зазоров. Следует также учесть, что изделие впитывает избыточную влагу.

  • Керамический. Современный и красивый материал, выпускаемый в значительном ассортименте. Если говорить о теплопроводности, то она существенно ниже, чем у обыкновенного красного кирпича.

Бывает полнотелый керамический брикет, огнеупорный и щелевой, с пустотами. Коэффициент проводимости тепла зависит от веса кирпича, вида и количества щелей в нем. Теплая керамика внешне красива, к тому же внутри имеет множество тонких зазоров, что делает ее очень теплой и потому идеальной для строительства. Если в керамическом изделии имеются также поры, снижающие вес, кирпич называется поризованным.

К недостаткам такого кирпича следует отнести то, что отдельные единицы малого размера и хрупкие. Поэтому теплая керамика подходит не для всех конструкций. К тому же это дорогостоящий материал.

Что касается огнеупорной керамики, то это так называемый шамотный кирпич – жженый брусок из глины с высоким показателем теплопроводности, почти таким же, как у обыкновенного полнотелого материала. Вместе с тем огнеупорность – ценное свойство, которое всегда учитывают при строительстве.

Из такого «печного» кирпича сооружают камины, он обладает эстетичным внешним видом, сохраняет тепло в доме благодаря высоким показателям теплопроводности, морозоустойчив, не поддается воздействию кислот и щелочей.

Теплоемкость удельная – это энергия, которая расходуется для нагревания одного килограмма материала на один градус. Этот показатель нужен для определения устойчивости к теплу стен здания, в особенности при низких температурах.

Для изделий из глины и керамики этот показатель колеблется в пределах 0,7-0,9 кДж/кг. Силикатный кирпич дает показатели в 0,75-0,8 кДж/кг. Шамотный способен при нагревании давать увеличение теплоемкости с 0,85 до 1,25.

Сравнение с другими материалами

Среди материалов, способных составить конкуренцию кирпичу, существуют как натуральные и традиционные – дерево и бетон, так и современные синтетические – пеноплекс и газобетон.

Деревянные строения издавна возводились в северных и других отличающихся низкими зимними температурами районах, и это неспроста. Удельная теплоемкость дерева значительно ниже, чем у кирпича. Дома в этой местности строят из цельного дуба, хвойных пород деревьев, а также применяют ДСП.

Если дерево режут поперек волокон, коэффициент теплопроводности материала не превышает 0,25 Вт/М*К. Низкий показатель и у ДСП – 0,15. А наиболее оптимальным для строительства коэффициентом отличается древесина, разрезанная вдоль волокон – не более 0,11. Очевидно, что в домах из такого дерева достигается отличная сохранность тепла.

Таблица наглядно демонстрирует разброс в величине коэффициента теплопроводности кирпича (выражается в Вт/М*К):

  • клинкерный – до 0,9;
  • силикатный – до 0,8 (с пустотами и щелями – 0,5-0,65);
  • керамический – от 0,45 до 0,75;
  • щелевая керамика – 0,3-0,4;
  • поризованный – 0,22;
  • теплая керамика и блоки – 0,12-0,2.

При этом поспорить с деревом по уровню сохранения теплоты в доме может только теплая керамика и поризованный кирпич, которые также дороги и хрупки. Тем не менее, кирпичная кладка при возведении стен используется чаще, и не только по причине дороговизны цельного дерева. Деревянные стены боятся атмосферных осадков, выгорают на солнце. Не любит дерево и химических воздействий, к тому же древесина способна гнить и пересыхать, на ней образуется плесень. Поэтому этот материал требует специальной обработки до начала строительства.

Кроме того, огонь способен очень быстро разрушить деревянное строение, так как древесина отлично горит. В отличие от нее, большинство видов кирпича довольно устойчиво к воздействию огня, в особенности шамотный кирпич.

Что касается других современных материалов, для сравнения с кирпичом обычно выбирают пеноблок и газобетон. Пеноблоки – это бетон с порами, в состав которого входят вода и цемент, пенообразующий состав и затвердители, а также пластификаторы и другие компоненты. Композит не впитывает влагу, отличается высокой морозостойкостью, сохраняет тепло. Используется при возведении невысоких (в два-три этажа) частных построек. Теплопроводность равна 0,2-0,3 Вт/М*К.

Газобетон – очень прочные соединения сходного строения. В них до 80% пор, обеспечивающих отличную тепло- и звукоизоляцию. Материал экологичный и удобный в использовании, а также недорогой. Теплоизоляционные свойства газобетона в 5 раз выше, чем у красного кирпича, и в 8 раз – чем у силикатного (коэффициент теплопроводности не превышает 0,15).

Однако газоблочные структуры боятся воды. К тому же по плотности и долговечности они уступают красному кирпичу. Одним из востребованных на рынке стройматериалов называют пенополистирол экструдированный, или пеноплекс. Это плиты, предназначенные для теплоизоляции. Материал пожаробезопасен, не впитывает влагу и не гниет.

По мнению специалистов, сравнение с кирпичом данный композит выдерживает лишь по теплопроводности. Утеплитель имеет показатель, равный 0,037-0,038. Пеноплекс недостаточно плотный, он не обладает нужной несущей способностью. Поэтому лучше всего сочетать его с кирпичом при возведении стен, при этом дополненная пеноплексом кладка в полтора полых кирпича позволит добиться соблюдения строительных норм по теплоизоляции жилого помещения. Применяется пеноплекс и для фундаментов домов и отмостков.

Морозостойкость

Морозостойкость определяется путем циклов заморозки и размораживания. Данный параметр важен при выборе вида кирпича для укладывания несущих стен. Марка зависит от количества циклов и указывается на изделиях. Наиболее высокой морозостойкостью обладает облицовочный и красный кирпич, который хорошо выдерживает температуру до -50 градусов Цельсия и ниже. Если у вас используется силикатный кирпич, его свойства хуже, поэтому кладку придется делать в два слоя. Не подойдет силикат и для строительства фундамента.

В условиях зимней непогоды тепло в доме сохраняется за счет обогревательного котла отопительной системы. Но для того чтобы не происходило рассеивания тепла, нужны стены, пол и потолок из соответствующего материала, хорошо сохраняющего заданную температуру. Тип кирпичной кладки играет в ходе строительства немаловажную роль. Выбирать материал следует, учитывая все параметры и погодные условия.

В следующем видео вас ждет обзор теплопроводности кирпича ШБ 8.

Все права защищены, 14+

Запрещено использование любых материалов без нашего предварительного письменного согласия.

Источник:
http://stroy-podskazka.ru/kirpich/teploprovodnost-i-teploemkost/

Теплопроводность строительных материалов: таблица

Процесс строительства любого жилого или промышленного объекта начинается с разработки проекта. В нем необходимо предусмотреть взаимное расположение всех элементов конструкции, а также учесть качество применяемых материалов. Все они обладают разными физическими характеристиками. В каждом случае производители предусматривают коэффициенты теплопроводности строительных материалов.

Благодаря знанию данного параметра быстрее проводится разработка и постройка зданий, обеспечивающих экономию ресурсов. Внутри помещений образуется приятный микроклимат не только зимой, но и летом. Часто в таком случае помогает таблица теплопроводности материалов. В нее входят наиболее популярные строительные компоненты.

Определение базового понятия

Теплопроводность строительных материалов характеризуется возможностью перераспределения энергии от более теплых частиц к более прохладным участкам. Перераспределение будет происходить до тех пор, пока не сформируется тепловой баланс. Фактически на всех участках конструкции будет единая температура.

Явление имеет актуальность для всех ограждающих элементов домостроения, которыми являются:

  • наружные стены;
  • внутренние перегородки;
  • пол;
  • крыша;
  • потолок и другие перекрытия.

Теплопроводность утеплителей определяется временем, в течение которого за счет теплопередачи температурные условия внутри здания станут соответствовать условиям снаружи. Оптимальным является наиболее продолжительный процесс, растянутый на длительный временной интервал. В таком случае за счет применяемых материалов и фактур удастся оптимизировать расходы на эксплуатацию.

Сравнение показателей теплосбережения разных стройматериалов

Определяя, например, теплопроводность пенополистирола или каких-либо экструдированных его разновидностей, необходимо знать, что данный параметр позволяет определять какое количество тепловой энергии за установленную единицу времени проходит сквозь единицу поверхности. Применяется исчисление Вт/(м*градус). Соответственно, чем численное значение больше, тем эффективнее проводится тепло через указанное вещество, а все процессы, связанные с теплообменом станут проходить быстрее.

Создавая проект дома, бани, гаража или иной бытовой постройки, нужно самостоятельно учитывать данный фактор. При этом подбирать утеплители необходимо с минимальными значениями проводимости тепла.

Некоторые примеры практического применения

Практическая ценность такого знания заключается в том, чтобы сравнивать разные материалы всевозможной толщины с другими, определяя оптимальные параметры. Так теплопроводность пенопласта 50 мм в сравнении с кирпичной двухрядной кладкой будет примерно равной. Это значит, для того чтобы создать стену из кирпича сопоставимую с 10 см пенопласта, необходимо выкладывать ее в 4 кирпича, что является весьма затратным и нерациональным по использованию ресурсов.

Коэффициент теплопроводности кирпичей

Для сухой сосны коэффициент передачи тепла равен 0,17 Вт(м*град), а для пенобетона значение – 0,18, что является весьма близким. В таком случае оба вещества способны хранить тепло с идентичной способностью. Необходимо учитывать не только фактуру сырья, из которого изготовлена Важно! термическая отделка, но и его форму.

Примером служит разница пустотелого и полнотелого кирпича. В первом случае коэффициент составит 0,55, а во втором – 0,80 Вт(м*град). Наличие воздушной прослойки внутри блоков позволило почти в полтора раза повысить эффективность термоизоляции.

На практике опытные строители с успехом комбинируют различные материалы, используя их позитивные качества. Когда дом выложен из прочного кирпича, то для его утепления можно задействовать пенопласт. Его применяют снаружи и внутри здания, создавая многослойную конструкцию. Строители любят монтировать пенополистирол, так как он имеет один из минимальных коэффициентов, составляющий 0,03 Вт(м*град).

Взамен дорогим и долго строящимся домам из кирпичной кладки, приходят более прогрессивные технологии. Даже еще недавно популярные монолитные либо панельно-каркасные постройки уходят в прошлое. Их место занимают здания из ячеистого бетона. Он обладает показателями, сопоставимыми с характеристиками древесины. Стены не подвергаются сквозному промерзанию даже во время лютых морозов.

Шкала толщины стройматериалов при идентичных коэффициентах

Актуальный принцип применяется во время возведения каркасных легких домов, также его задействуют при возведении коттеджей, крупных складов, загородных супер- и мегамаркетов, всевозможных промышленных построек. При соблюдении технологии возведенное подобным образом здание из современных строительных материалов с минимальным коэффициентом проводимости можно эксплуатировать в различных климатических условиях.

Для щитовых конструкций формируют заготовки из листов OSB, между которыми крепится минвата или экструдированный пенополистирол. Такие стены вполне справляются с функцией по созданию комфортного микроклимата внутри помещения.

Читайте также  Крепление фундамента теплицы из бруса к земле, как правильно сделать фундамент под брус 100 на 100 или 50 на 50 своими руками

ВИДЕО: Как сделать теплотехнический расчет дома

Что может повлиять на изменение характеристик

На коэффициент теплопроводности могут оказывать влияние разные технологические факторы:

Пористость

Образуемые технологические пустоты внутри базового вещества не допускают однородности фактуры. В процессе прохода тепловой струи часть энергии передается в газовые пустоты. Так как установлено, что сухой воздух имеет коэффициент 0,02 Вт(м*град), то чем больше в фактуре пустот, тем будет больше понижаться коэффициент передачи тепловой энергии.

Размеры пор

Наибольшей эффективностью обладают малые замкнутые поры. За счет них существенно снижается скорость теплового потока. Для случаев с крупными порами необходимо добавлять явление перемещение тепла при помощи конвекции.

Плотность материала

Высокое значение данного показателя характеризуется достаточно близким расположением частиц внутри вещества. Таким образом между его составляющими тепло перемещается достаточно быстро. Для определения зависимости между плотностью и теплопроводностью используются специальные справочники.

Уровень влажности

Необходимо учитывать, что вода в чистом виде обладает теплопроводностью со значением 0,6 Вт/(м*град). Когда утеплитель промокает, то это значит, что на место воздушных ячеек проникает влага. Так как воздух имеет коэффициент 0,02, а вода 0,6, то структура теряет изоляционные свойства пропорционально степени увлажнения. Часто эта зависимость не линейная, а экспоненциальная.

Температура окружающей среды

Также оказывает влияние на итоговое значение. Для расчета берется формула λ=λо*(1+b*t), в которой под λо подразумевается коэффициент теплопроводности при нулевой температуре, b – определенная справочная величина термокоэффициента, а t – действующее значение в градусах Цельсия.

Имеет значение и то, где установлен утеплитель, чтобы увеличить или уменьшить показатели паропроницаемости и проводимости тепла

Чтобы обеспечить правильные параметры по теплоизоляции для здания, необходимо соблюдать действующие нормативные акты, к которым относятся следующие:

  • СП 23-101-2004 – используются в процессе создания проектов тепловой защиты;
  • СНиП23-01-99 – устанавливают параметры строительной климатологии;
  • СНиП 23-02-2003 – необходимы при актуальных расчетах термической защиты зданий.

Таблица теплопроводности строительных материалов

ВИДЕО: Из чего стоит дом построить

Источник:
http://www.izolgid.ru/info/teploprovodnost-stroitelnykh-materialov-tablisa/

Какая теплопроводность кирпича?

Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Теплопроводность кладки

По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:

  1. За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
  2. Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
  3. Определяют для кладки термическое сопротивление.
  4. Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.

Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.

После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.

Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.

Уменьшение коэффициента теплоотдачи стены

Существует несколько способов, которые позволяют снизить тепловые потери.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Что обозначает показатель

Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.

Физический смысл показателя теплопроводности — какое за единичный интервал времени через единицу площади сечения проходит количество теплоты.

В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:

  • малоэффективная (обыкновенная) — от 0,46 и выше;
  • условно-эффективная — 0,36-0,46;
  • эффективная — 0,24-0,36;
  • повышенная — 0,2-0,24;
  • высокая — меньше 0,2.

Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.

Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.

Свойства различных типов

Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:

Красный керамический

Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.

Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.

Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.

Красный кирпич из керамики российского производства имеет толщину 6,5 см и 25 см в длину. Для двойного толщина составляет 13,8 см, 8,8 см — для полуторного.

У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.

Чтобы внутри изделия образовались пустоты, используется «шихта» — торф, крошки угля, опилки, солома мелко порубленная. Ее добавляют в массу глины. Пустоты образуются, когда добавки выгорают при спекании глины в печах с 1000°С температурой.

По показателю плотности кирпич делится на 7 категорий — от 2,4 до 0,7. Каждый класс изделия обладает собственной теплопроводностью.

0,6-0,7 — коэффициент теплопроводности для изделий с цельной структурой. Для пустотелых — 0,5-0,25 Вт/м*0С.

Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.

Клинкерный

Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.

При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.

Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.

  1. Морозостойкость более 100 циклов.
  2. Минимальная марка прочности М250.
  3. 1500 кг/см3 — наименьший показатель плотности.
  4. Высокая огнестойкость, устойчивость к биологическим угрозам, воздействию ультрафиолета.
  5. 6% — максимальное водопоглощение.
  6. Коэффициент теплопроводности — 1,15Вт/м*0С.

Характеристика шамотного

Этот вид кирпича делают из специальной глины — желтого шамота. Получаемые изделия являются жаростойким материалом, который в сложных условиях высоких температур даже под высоким давлением способен сопротивляться деформациям. Длительный контакт с открытым огнем спокойно им переносится.

Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.

Материал делят на 8 групп по показателям пустотности. Максимальное значение — 85%, минимальное — 3%. Чем меньше удельный вес изделия, тем ниже прочностные характеристики.

Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:

Силикатный

Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.

Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.

ГОСТ379-95, 379-2015 определяют требования к силикатному кирпичу. 15-31% составляет показатель пустотности. Вес изделий — от 3,2 до 5,8 кг.

  • 1450 кг/м3 — для пустотелого кирпича марки М150;
  • 1700-2100 кг/м3 — для полнотелого М150-200.

Теплопроводность пустотелых силикатных изделий составляет 0,56-0,81 Вт/м*0С, и 0,65-0,88 — для полнотелых.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

Что влияет на показатели

Теплопроводность стройматериала — способность сквозь свою толщину передавать тепло и стационарные внутренние процессы, происходящие внутри него при этом. Тесный контакт является обязательным условием для передачи теплоты от 1 объекта к другому, поэтому в чистом виде теплопроводность имеют только твердые тела.

На показатель λ оказывает влияние:

  • влажность;
  • температура;
  • пористость;
  • формы и структура пор;
  • фазовый состав влаги;
  • плотность.

Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.

Входящие в состав материала вещества своей химической природой определяют способность удерживать тепловую энергию. Величина λ тем меньше, чем слабее связаны между собой образующие кристаллическую решетку вещества атомные группы или тяжелые атомы.

Источник:
http://kubkirpich.ru/o-kirpiche/teploprovodnost.html